12,366 research outputs found

    Fragmentation, infall, and outflow around the showcase massive protostar NGC7538 IRS1 at 500 AU resolution

    Full text link
    Aims: Revealing the fragmentation, infall, and outflow processes in the immediate environment around massive young stellar objects is crucial for understanding the formation of the most massive stars. Methods: With this goal in mind we present the so far highest spatial-resolution thermal submm line and continuum observations toward the young high-mass protostar NGC7538 IRS1. Using the Plateau de Bure Interferometer in its most extended configuration at 843mum wavelength, we achieved a spatial resolution of 0.2"x0.17", corresponding to ~500AU at a distance of 2.7\,kpc. Results: For the first time, we have observed the fragmentation of the dense inner core of this region with at least three subsources within the inner 3000 AU. The outflow exhibits blue- and red-shifted emission on both sides of the central source indicating that the current orientation has to be close to the line-of-sight, which differs from other recent models. We observe rotational signatures in northeast-southwest direction; however, even on scales of 500 AU, we do not identify any Keplerian rotation signatures. This implies that during the early evolutionary stages any stable Keplerian inner disk has to be very small (<=500 AU). The high-energy line HCN(4-3)v2=1 (E_u/k=1050K) is detected over an extent of approximately 3000 AU. In addition to this, the detection of red-shifted absorption from this line toward the central dust continuum peak position allows us to estimate infall rates of ~1.8x10^(-3)Msun/yr on the smallest spatial scales. Although all that gas will not necessarily be accreted onto the central protostar, nevertheless, such inner core infall rates are among the best proxies of the actual accretion rates one can derive during the early embedded star formation phase. These data are consistent with collapse simulations and the observed high multiplicity of massive stars.Comment: Accepted for Astronomy & Astrophysics, 8 pages, also available at http://www.mpia.de/homes/beuther/papers.htm

    The Delta-Hole model at Finite Temperature

    Get PDF
    The spectral function of pions interacting with a gas of nucleons and Delta-33-resonances is investigated using the formalism of Thermo Field Dynamics. After a discussion of the zero Delta-width approximation at finite temperature, we take into account a constant width of the resonance. Apart from a full numerical calculation, we give analytical approximations to the pionic spectral function including such a width. They are found to be different from previous approximations, and require an increase of the effective Delta-width in hot compressed nuclear matter. The results are summarized in an effective dispersion relation for interacting pions.Comment: 34 pages in standard LaTeX GSI-preprint No. GSI-93-2

    Diagonalization of full finite temperature Green's function by quasi-particles

    Get PDF
    For thermal systems, standard perturbation theory breaks down because of the absence of stable, observable asymptotic states. We show, how the introduction of {\it statistical} quasi-particles (stable, but not observable) gives rise to a consistent description. Statistical and spectral information can be cleanly separated also for interacting systems.Comment: 9 pages in standard LaTe

    Carbonates in space - The challenge of low temperature data

    Full text link
    Carbonates have repeatedly been discussed as possible carriers of stardust emission bands. However, the band assignments proposed so far were mainly based on room temperature powder transmission spectra of the respective minerals. Since very cold calcite grains have been claimed to be present in protostars and in Planetary Nebulae such as NGC 6302, the changes of their dielectric functions at low temperatures are relevant from an astronomical point of view. We have derived the IR optical constants of calcite and dolomite from reflectance spectra - measured at 300, 200, 100 and 10K - and calculated small particle spectra for different grain shapes, with the following results: i) The absorption efficiency factors both of calcite and dolomite are extremely dependent on the particle shapes. This is due to the high peak values of the optical constants of CaCO3 and CaMg[CO3]2. ii) The far infrared properties of calcite and dolomite depend also very significantly on the temperature. Below 200K, a pronounced sharpening and increase in the band strengths of the FIR resonances occurs. iii) In view of the intrinsic strength and sharpening of the 44 mum band of calcite at 200-100K, the absence of this band -- inferred from Infrared Space Observatory data -- in PNe requires dust temperatures below 45K. iv) Calcite grains at such low temperatures can account for the '92' mum band, while our data rule out dolomite as the carrier of the 60-65 mum band. The optical constants here presented are publicly available in the electronic database http://www.astro.uni-jena.de/Laboratory/OCDBComment: 20 pages, 10 figures, accepted by ApJ, corrected typo

    Quasiclassical theory for the superconducting proximity effect in Dirac materials

    Full text link
    We derive the quasiclassical non-equilibrium Eilenberger and Usadel equations to first order in quantities small compared to the Fermi energy, valid for Dirac edge and surface electrons with spin-momentum locking, as relevant for topological insulators. We discuss in detail several of the key technical points and assumptions of the derivation, and provide a Riccati-parametrization of the equations. Solving first the equilibrium equations for S/N and S/F bilayers and Josephson junctions, we study the superconducting proximity effect in Dirac materials. Similarly to related works, we find that the effect of an exchange field depends strongly on the direction of the field. Only components normal to the transport direction lead to attenuation of the Cooper pair wavefunction inside the F. Fields parallel to the transport direction lead to phase-shifts in the dependence on the superconducting phase difference for both the charge current and density of states in an S/F/S-junction. Moreover, we compute the differential conductance in S/N and S/F bilayers with an applied voltage bias, and determine the dependence on the length of the N and F regions and the exchange field.Comment: 13 pages, 5 figures. Accepted for publication in Phys. Rev.

    Meson and Quark Degrees of Freedom and the Radius of the Deuteron

    Get PDF
    The existing experimental data for the deuteron charge radius are discussed. The data of elastic electron scattering are inconsistent with the value obtained in a recent atomic physics experiment. Theoretical predictions based on a nonrelativistic description of the deuteron with realistic nucleon-nucleon potentials and with a rather complete set of meson-exchange contributions to the charge operator are presented. Corrections arising from the quark-gluon substructure of the nucleon are explored in a nonrelativistic quark model; the quark-gluon corrections, not accounted for by meson exchange, are small. Our prediction for the deuteron charge radius favors the value of a recent atomic physics experiment.Comment: 20 pages, LaTeX, 4 Postscript figures, to appear in Few-Body-System

    TRADE GAINS AND WELFARE COSTS OF INCOME STABILIZATION PROGRAMS FOR HOG PRODUCERS IN QUEBEC

    Get PDF
    The welfare costs of deficiency payments for an exported commodity may, under certain conditions, outweigh the gains from trade. The potential welfare impacts of stabilization programs in the hog sector in Quebec are estimated, based on a partial equilibrium framework, and elasticity estimates drawn from other sources. The results indicate that the loss in surplus in Quebec as a result of deficiency payments is very modest at approximately 8.5millionor1.78.5 million or 1.7% of the value of production. Meanwhile, the net gains from trade remain on the order of 14 million.Livestock Production/Industries,

    Shear banding in nematogenic fluids with oscillating orientational dynamics

    Get PDF
    We investigate the occurrence of shear banding in nematogenic fluids under planar Couette flow, based on mesoscopic dynamical equations for the orientational order parameter and the shear stress. We focus on parameter values where the sheared homogeneous system exhibits regular oscillatory orientational dynamics, whereas the equilibrium system is either isotropic (albeit close to the isotropic--nematic transition) or deep in its nematic phase. The numerical calculations are restricted to spatial variations in shear gradient direction. We find several new types of shear banded states characterized by regions with regular oscillatory orientational dynamics. In all cases shear banding is accompanied by a non--monotonicity of the flow curve of the homogeneous system; however, only in the case of the initially isotropic system this curve has the typical SS--like shape. We also analyze the influence of different orientational boundary conditions and of the spatial correlation length.Comment: 12 pages, 10 figure
    • …
    corecore